
 Technical Report

 Technical Report

Prepared by: BugBusters
Date: November 26, 2025

Client: SafeTrust

 Technical Report

Table of Contents

Technical Summary
Detailed Technical Findings
Remediation Guidance
Appendices
Detailed Technical Findings

 nical Report

2.​ Detailed Technical Findings

2.1 Finding 1:

a.​ Title of Vulnerability
i.​ Improper File Type Validation on Profile Image Upload API

b.​ Severity Rating:
i.​ High

ii.​ CVSS v3.1 Score: 7.5 (AV:N/AC:L/PR:L/UI:N/S:U/I:L/A:N)
c.​ Affected Systems

i.​ Endpoint:
ii.​ Functionality: User Profile Picture Upload

d.​ Description of the Vulnerability
i.​ The file upload API used for profile pictures is intended to only accept

image files in JPG, PNG, and JPEG formats. However, the server validates
the file type based solely on the client-supplied Content-Type header,
without verifying the actual file contents or enforcing secure server-side
validation. During testing, the request upload of a .png file was intercepted
in Burp Suite, and the Content-Type header was modified to
image/svg+xml. Despite this contradiction, the server accepted and stored
the file as an SVG, returning a 200 OK response with a publicly accessible
.svg URL.

e.​ Why It Matters
i.​ Technical Impact:

1.​ SVG files can contain:
a.​ JavaScript
b.​ Embedded Scripts
c.​ Event Handlers
d.​ External References

ii.​ Business Impact:
1.​ Unauthorized access to sensitive information.
2.​ Reputational damage if attackers upload harmful content.
3.​ Potential legal exposure if user data is impacted.

f.​ Exploitation Path
i.​ The attacker uploads any valid image file through the profile picture

upload function.
ii.​ The attacker intercepts the upload request with Burp Suite (or similar).

iii.​ The attacker modifies the Content-Type header to a disallowed but more
dangerous type, e.g., image/svg+xml.

iv.​ The server processes the upload without validating the file type and stores
it.

 Technical Report

v.​ The server returns a successful 200 OK response and exposes a public

URL to the malicious SVG file.
vi.​ Any user who loads the malicious file or views the attacker’s profile could

trigger the embedded malicious script.
g.​ Reproduction Instructions

i.​ Log into the staging environment as a normal (low-privileged)
user.

ii.​ Navigate to the Profile → Upload Profile Image feature.
iii.​ Select any .png image and begin the upload process.
iv.​ Intercept the request in Burp Suite.
v.​ Modify the Content-Type header to: Content-Type: image/svg+xml

vi.​ Forward the request.
vii.​ Observe the server response: HTTP1/1 200 OK

viii.​ Observe the returned JSON referencing the improperly stored file.

2.2 Finding 2:
a.​ Title of Vulnerability

i.​ Missing HttpOnly Flag on Session Cookies
b.​ Severity Rating

i.​ Medium
ii.​ CVSS v3.1 Score: 6.5 (AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N)

c.​ Affected Systems
i.​ Application: Credential Manager Portal

ii.​ Domain:
iii.​ Affected Cookies:

1.​ AWSALBAPP-0, AWSALBAPP-1, AWSALBAPP-2,
AWSALBAPP-3 (AWS Application Load Balancer) - __zlcmid
(tracking cookie) - _ga, _gid, _ga_CBSZ7DFEM4 (Google
Analytics cookies)

d.​ Description of the vulnerability
i.​ During session management testing, the Set-Cookie response headers for

all application cookies were found to be missing the HttpOnly security
flag. The HttpOnly flag is a security control that prevents client-side
JavaScript from accessing cookies through the document.cookie API.

ii.​ Analysis of HTTP response headers revealed that while cookies
implement the Secure flag (preventing transmission over unencrypted
connections) and SameSite=None (allowing cross-site requests), the
critical HttpOnly flag is absent:
Set-Cookie: AWSALBAPP-0=_remove_; Expires=Thu, 11 Dec 2025
02:47:17 GMT; Path=/; SameSite=None; Secure

 Technical Report

2.3 Additional Security Observations

During penetration testing of the Credential Manager Portal, several
security concerns were identified that do not constitute immediately exploitable
vulnerabilities but represent security control gaps, outdated practices, or areas for security
enhancement. These observations are provided to assist in strengthening their
overall security posture and implementing defense-in-depth measures.

Unlike the detailed technical findings in Section 2.1-2.2, these observations did not
undergo full exploitation testing but were identified through reconnaissance,
authentication analysis, and security configuration review. Each observation includes a
description of what was found, potential security implications, and specific
recommendations for remediation.

2.3.1 Observation 1: Absence of Multi-Factor Authentication

a.​ Description
i.​ The Credential Manager Portal authentication mechanism does

not implement or enforce multi-factor authentication (MFA). Analysis of
the authentication flow revealed that users can successfully authenticate
using only a username and password, with no second factor challenge
presented.

ii.​ During testing, authentication requests were captured and analyzed using
Burp Suite. The HTTP request to the /api/account endpoint contains the
parameter otp=undefined, which explicitly indicates that no one-time
password or second authentication factor is required or supported by the
system:

GET
/api/account?LOCATION=@0,@0,0z&deviceType=Web&otp=undefined
&deviceName=Web%20-%20Chrome&operatingSystem=Mac%20OS&h
ardware=undefined HTTP/1.1

Host:

iii.​ The presence of the OTP parameter suggests the authentication system
may have been designed to support MFA, but the feature is either not
implemented, not enabled, or not enforced.

b.​ Evidence

 Technical Report

2.3.2 Observation 2: Use of Deprecated Cryptographic Algos in Authentication

a.​ Description
i.​ Analysis of the authentication mechanism revealed the use of

MD5 hashing algorithm within the authentication token structure. During
authentication flow analysis, requests were intercepted using Burp Suite
and the App-Auth authentication token was captured and decoded.

ii.​ The App-Auth token follows a structured format with multiple
Base64-encoded components. After decoding the outer Base64 layer, the
token structure was found to contain:

iii.​ Token Structure:

b.​ Md5 hashes identified
i.​ Session token component: (32

hexadecimal characters = MD5)
ii.​ Additional hash 1: 2 (found in nested

Base64 data)
iii.​ Additional hash 2: d (found in nested

Base64 data)
c.​ Additional Observations

i.​ User email address appears in plaintext within the token:

ii.​ Token structure is predictable and follows a documented pattern
iii.​ Multiple layers of Base64 encoding are used (outer wrapper and internal

components)
iv.​ Decoding Process:

Base64 decode the App-Auth token

echo "[APP_AUTH_TOKEN]" | base64 -d

Output reveals token structure with MD5 hashes

 Technical Report

3. Tailored Technical Remediation Guidance
This section provides specific, actionable remediation steps for the technical finding and security
observations identified during testing. Each recommendation includes implementation details,
testing procedures, and estimated effort.

3.1 Remediation for Finding 2: Missing HttpOnly Flag on Session Cookies

Severity: Medium (CVSS 6.5)​
Priority: High​
Estimated Effort: 2-4 hours (configuration change)​
Complexity: Low

a.​ Remediation Steps
i.​ Step 1: Add HttpOnly Flag to Set-Cookie Headers

1.​ The HttpOnly flag must be added to all Set-Cookie response headers.
2.​ Implementation depends on the technology stack.

ii.​ Step 2: Configure AWS Application Load Balancer Cookies
aws elbv2 modify-target-group-attributes --target-group-arn
YOUR_TARGET_GROUP_ARN --attributes
Key=stickiness.enabled,Value=true

iii.​ Step 3: Testing and Verification
1.​ Verify Headers

curl -I https:/
 # Confirm: Set-Cookie: AWSALBAPP-0=...; HttpOnly; Secure;
SameSite=Lax

2.​ Browser Console Test
a.​ Open Developer Tools → Console
b.​ Execute: document.cookie
c.​ Verify: Session cookies do NOT appear (only analytics cookies

like _ga)
3.​ Browser Developer Tools

a.​ Application/Storage tab → Cookies
b.​ Verify: HttpOnly column shows checkmark for all session cookies

4.​ Functional Testing
a.​ Verify users can log in successfully
b.​ Confirm session persistence works
c.​ Test across multiple browsers

 Technical Report

1.​ Identify All MD5 Usage:

a.​ Search codebase for MD5 implementations
b.​ Categorize usage: password hashing (critical), session IDs (high),

cache keys (low)
c.​ Document dependencies on current token structure

2.​ Prioritize Replacements:
a.​ Critical: MD5 for password hashing (if applicable) - immediate

replacement required
b.​ High: MD5 in session tokens - replace during auth refactor
c.​ Low: MD5 for checksums/ETags - acceptable for non-security uses

3.​ Remove Information Disclosure
a.​ Remove Plaintext Email from Tokens

i.​ Use opaque user IDs instead of email addresses
ii.​ Store user identification server-side, not in token

b.​ Implement Opaque Token Structure
i.​ Replace structured tokens (-1/email/hash/...) with

cryptographically random tokens
ii.​ Store token metadata in database rather than encoding in

token

4. Appendices
​ 4.1 Tools Used

a.​ Primary Testing Tools
i.​ Burp Suite

1.​ Version: Latest (2025)
2.​ Purpose: Web application security testing, HTTP/HTTPS traffic

interception, request manipulation, vulnerability scanning
3.​ Key Features Used:

a.​ Proxy: Intercepted and modified HTTP requests during
authentication flow

b.​ Repeater: Replayed and modified requests for session
management testing

c.​ Decoder: Decoded Base64-encoded authentication tokens
d.​ Comparer: Analyzed differences in HTTP responses

ii.​ Kali Linux
1.​ Version: 2025.x
2.​ Purpose: Primary penetration testing operating system
3.​ Distribution: Debian-based Linux with pre-installed security tools

b.​ Reconnaissance and Enumeration Tools
i.​ dig (Domain Information Groper)

 Technical Report

1.​ Purpose: DNS enumeration and infrastructure mapping
2.​ Usage: Identified IP addresses, DNS records, and hosting

infrastructure
ii.​ nmap (Network Mapper)

1.​ Version: 7.95
2.​ Purpose: Port scanning, service detection, and OS fingerprinting
3.​ Usage: Identified open ports, web server versions, and network

services
iii.​ Gobuster

1.​ Version: Latest
2.​ Purpose: Directory and file enumeration on web servers
3.​ Usage: Discovered hidden directories, API endpoints, and

application structure
iv.​ Whatweb

1.​ Purpose: Web technology fingerprinting and identification
2.​ Usage: Identified web server software, frameworks, CMS, and

technologies
v.​ Curl

1.​ Purpose: HTTP request testing and API interaction
2.​ Usage: Manual HTTP requests, header analysis, API endpoint

discovery
c.​ SSL/TLS Analysis Tools

i.​ OpenSSL
1.​ Purpose: SSL/TLS certificate analysis and cryptographic

operations
2.​ Usage: Certificate inspection, expiration checking, cipher suite

analysis
ii.​ Sslscan

1.​ Version: 2.1.5
2.​ Purpose: SSL/TLS configuration testing and cipher suite analysis
3.​ Usage: Verified TLS versions, cipher suites, and SSL/TLS

vulnerabilities
d.​ Testing Methodology Framework

i.​ OWASP Web Security Testing Guide (WSTG) v4.2
1.​ Purpose: Structured testing methodology
2.​ Sections Applied:

a.​ WSTG-INFO: Information Gathering (01-06)
b.​ WSTG-ATHN: Authentication Testing
c.​ WSTG-SESS: Session Management Testing
d.​ WSTG-AUTHZ: Authorization Testing

